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Force distribution in a scalar model for noncohesive granular material
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We study a scalar lattice model for intergrain forces in static, noncohesive, granular materials, obtaining two
primary results:~i! The applied stress as a function of overall strain shows a power law dependence with a
nontrivial exponent, which moreover varies with system geometry; and~ii ! probability distributions for forces
on individual grains appear Gaussian at all stages of compression, showing no evidence of exponential tails.
With regard to both results, we identify correlations responsible for deviations from previously suggested
theories.@S1063-651X~99!08808-X#

PACS number~s!: 81.05.Rm, 62.40.1i, 02.50.Ey
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I. INTRODUCTION

Attempts to understand stress distribution in static, n
cohesive, granular materials have uncovered a rich struc
of force chains that currently is poorly understood@1#. Al-
though mechanical systems such as bead or granular p
ings that are subject to uniaxial compression seem strai
forward, they harbor fundamental theoretical challeng
concerning the connection between the micro and ma
scales. Such systems are far from thermal equilibrium, s
thermal energy scales are negligible compared to the po
tial energies stored in elastic deformation of the grains.
addition, the force between grains is strongly nonlinear, a
vanishes identically when the grains are not in contact.

In this paper, we report results and analyses of a
model for the compaction of a granular material. Our mo
consists of ‘‘grains’’ placed on a square lattice and co
nected by vertical springs. The grains are constrained
move only in the vertical direction, so the model treats forc
and stresses asscalar quantities~see Fig. 1!. Geometric dis-
order is introduced in the model by assigning to each sp
an equilibrium length drawn randomly from a square dis
bution. The model contains no provision for slippage of e
isting contacts during compression. The potential energy
sociated with a contact is a simple function of the degree
which the associated spring is compressed and the ma
scopic process of compression is reversible.
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Though we cannot hope to capture the true physics
tensorial stresses or of frictional effects in this manner,
can study the validity of arguments that have been applie
real granular systems and should equally well apply to
toy model. In particular, we compare the distribution of i
tergrain forces generated by our model to the distribut
predicted by theq model of Coppersmithet al. @2#, and we
compare the stress-strain power law generated by our m
to that expected on the basis of a mean-field argument.
results provide a warning: in neither case are the theore
predictions borne out by the numerics.

II. DEFINITION OF THE MODEL

The structure of our model is shown in Fig. 1. Grains a
placed at the even-parity sites of a 2Nx3(Ny11) cubic lat-
tice with lattice constantb. We refer to such a system as a
‘‘ Nx3Ny’’ system. Excluding the sites on the lower boun
ary, it containsNxNy grains. Grains are constrained to mo
only in the vertical direction, as if sliding on fixed, friction
less wires~shown as thin lines in the figure!. We let ui , j
denote the vertical displacement of the grain at lattice
( i , j ) from its nominal heightjb, with ui , j.0 for upward
displacements. Between every two nearest-neighbor gr
there is a vertical spring. All of the springs respond linea
under compression, with spring constantk, but they produce
no force under extension. The energy of the spring betw
grainsi , j and i 61,j 21 is taken to be
Ei j
65H 1

2
k~ui , j2si j

62ui 61,j 21!2 if ~ui , j2si j
62ui 61,j 21!,0

0 otherwise,

~1!
ssed
ters

di-
re
where si j
1 and si j

2 are independent, quenched random va
ables designating the different uncompressed lengths of
springs. We takesi j

1 andsi j
2 to be distributed uniformly over

the interval (2e,e). Note that whens50, the uncompresse
spring has lengthb, the lattice constant. One may imagin
-
he
the grains to have arbitrary shapes and the uncompre
spring length to be the vertical spacing between grain cen
when the grains are just barely in contact.

The system is taken to satisfy periodic boundary con
tions in the horizontal direction. All grains at the top a
1999 © 1999 The American Physical Society
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2000 PRE 60SEXTON, SOCOLAR, AND SCHAEFFER
constrained from above by a rigid ‘‘ceiling’’ and therefo
satisfy ui ,Ny

<0. On the bottom row, grains are constrain
by a rigid ‘‘floor’’ whose heightU is an independent vari
able; thus,ui ,0>U. Let U0 denote the maximum value ofU
such that no springs are compressed. TypicallyU0 , which is
a function of the randomsi j

6’s, is negative and of the order o
Nye in absolute value~it cannot be less than2Nye). Below
we measure the floor height in terms of the incremental v
ableD[U2U0 .

Though we use the terms ‘‘floor,’’ ‘‘vertical,’’ etc., for
convenience, there is no gravity in the model and there
complete statistical symmetry between the up and down
rections. The algorithm discussed below for determin
equilibrium configurations explicitly breaks this symmetr
though the configurations it produces do not.

A. Meaningful parameters

Our model apparently depends on the parameterse andk,
but these merely set the scales for distance and force. Fo
rest of this paper, numerical values for distances~spring-
length variationssi j

6 , grain displacementsui , j , and boundary
displacementD! will be quoted in units ofe; and forces
~individual forcesf i j

6 and the total forceF on the ceiling! in
units of ke.

Although thewidth of the distribution of spring lengths
scales out of the problem, itsshapecould conceivably make
a difference. Nevertheless, we do not expect the pre
shape to be important as long as the probability of hav
very large uncompressed lengths decays sufficiently rapi
In any event, we consider only the square distribution.

Let us contrast the alternative of random spring consta
with the random equilibrium lengths we study here. If thek’s
were random but all equilibrium lengths were equal, then
D increased all the springs would begin to be compres
simultaneously atU50 and the system would be perfect
linear for allD.0; the force-versus-displacement law wou

FIG. 1. Scalar model. Diamonds represent rigid grains that s
on frictionless, vertical wires. Squiggly lines represent springs w
identical spring constants but differing equilibrium lengths. Gra
cannot penetrate the ceiling or floor.
i-
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beF(D)5KD for D.0 andF(D)50 for D,0, whereK is
a constant determined by the randomk’s. By contrast, with
random spring lengths we capture some of the geome
disorder of real granular materials, which inevitably intr
duces nonlinearities associated with the formation of n
contacts during compression.

B. General features of equilibrium configurations

We will refer to a spring under compression as an ‘‘acti
bond,’’ and to a site connected to such a spring as an ‘‘ac
site.’’ An equilibrium configuration forD positive, but not
too large, has a mixture of active and inactive sites a
bonds. For a given set ofsi j

6’s, the equilibrium configuration
of active sites and bonds is unique, although the exact p
tions of inactive sites are not determined. This uniquen
follows from the strict convexity of the total energy as
function of the lengths of active bonds.

Figure 2 shows three equilibrium configurations with t
same set ofsi j

6’s on a 40340 lattice, for different amounts o
compression. Only the active bonds are shown, with l
thickness proportional to the force transmitted. Also sho
are two bars representing the ceiling and the floor.

Let F(D) be the total force exerted by the system on t
ceiling. Figure 3 shows a typical force curve for a 40340
system, together with the fractions of sites and bonds that
activated. Elementary considerations reveal the limiting
haviors of F for large and smallD. For very smallD, the
force on the ceiling is due to a single chain of activat
springs that reaches from top to bottom. This chain, wh

e
h
s

FIG. 2. Configurations of active bonds in a 40340 system at
three different stages of compression.

FIG. 3. Typical force curve~solid line! for a 40340 system
together with curves showing the fraction of active sites~dotted
line! and the fraction of active bonds~dashed line!.
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PRE 60 2001FORCE DISTRIBUTION IN A SCALAR MODEL FOR . . .
follows the directed pathi ( j ) through the lattice that yields
the highest value of( j 51

Ny si j , produces a force linear inD,

F~D!5
1

Ny
D ~D small! . ~2!

When D is very large, all of the springs in the system a
compressed. The system is then again entirely linear:
cause all of the springs have the same stiffness,

F~D!5
2Nx

Ny
D1C ~D large! , ~3!

whereC is a ~negative! constant that depends on the rando
si j

6’s and is difficult to compute.
In general, asD is increased from zero, additional chain

are activated andF(D) increases. In fact it can be shown th
F must increase monotonically withD ~this is whyC must be
negative!. Surprisingly, however, the slope ofF(D) mayde-
creasewith increasingD. Occasionally bonds that are activ
at small values ofD become inactive for largerD, thus re-
ducing the effective spring constant of the network. The s
plest example of this behavior is illustrated in Fig. 4. T
figure shows a sequence of configurations in which the c
tral bond is originally active, but becomes inactive due to
effective stiffening of other parts of the network when ad
tional bonds are activated.

III. NUMERICAL ALGORITHM

The algorithm we employ for generating equilibrium co
figurations of our model relies heavily on the fact that fo
given set of active bonds, the system response is linear
solving for the times at which inactive bonds are activa
during compression, the algorithm generates the entire c
F(D), starting fromD50 and explicitly visiting every con-
figuration. To construct the initial, uncompressed configu
tion, we begin withui ,05U0 for all i and march up layer by
layer applying the rule

ui , j5max$~ui 21,j 211si j
2!,~ui 11,j 211si j

1!% . ~4!

FIG. 4. Sequence of configurations in which the central bon
originally active, but becomes inactive after other bonds beco
active. Consequently, the total stiffness of the network decrease
the system is compressed. Thick~thin! solid lines represent active
~inactive! springs with s50. Thick ~thin! dashed lines represen
active ~inactive! springs with equilibrium lengths52e. Springs
not drawn are assumed to have small enough equilibrium len
that they are never active in this sequence.dF/dD is smaller for the
third configuration than for the second, althoughD itself has in-
creased.
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This configuration can be thought of as the packing t
would result from an infinitesimal gravitational force actin
on the system.~Strictly speaking, we setui ,050, march up-
ward, determineU0 from the height reached, and translate
displacements accordingly.!

A typical initial configuration is shown in Fig. 5. Site
joined by line segments are separated precisely by the e
librium length of the spring between them. Springs that
not long enough to connect their two sites are not draw
Already one can see that there is a rich geometric struc
hidden in this model, quite similar to that described by Ro
et al. @3#. The heavy lines in the figure highlight structure
we call ‘‘trees,’’ consisting of all sites that are connected
the same site on the first layer.

We refer to the distance between the upper end of
inactivespring and the site to which it will eventually con
nect as a ‘‘gap.’’ Note that sizes of the gaps reflect the str
ture of our initialization algorithm. We have moved all th
grains to their lowest possible position, concentrating all
the small gaps that might be present in a chain into a sin
large gap at the top of a branch of a tree.

To generate the force curve, we maintain a list of act
sites and their active bonds, and we keep track of change
the tree structure of the uncompressed chains as the flo
raised. For any fixed set of active bonds, theui , j ’s increase
linearly with D, since all of the active springs are linear. It
therefore a straightforward linear problem to solve for t
rate, du/dD, at which eachui , j advances. AdvancingD
through one stage involves solving forui , j for some arbitrary
increase inD, for which we employ an iterative biconjugat
gradient routine@4#, using the current configuration ofui , j ’s
as an initial guess for the solution. The solution is used
determine the rates of advance of all the active sites. The
of advance of each inactive site is equal to that of the ac
site that supports it through an uncompressed chain.
rates are used to determine the value ofD at which the net-
work topology changes. Theui , j ’s are then updated accord
ing to the calculated rates, the list of active sites or the t
structure is updated, and the process is repeated.

The updating of the network topology is necessitated
ther by the closure of a gap or by the breaking of a bond. T
closure of a gap can generate one of two types of eve
First, it can cause an additional set of sites to be activa
which increases the size of our active site list~and also in-
creases the size of the linear problem that must be solve
the next iteration!. Second, it can result in a ‘‘push’’ even

is
e
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hs

FIG. 5. Typical initial configuration. All springs shown are a
exactly zero compression. Springs with equilibrium lengths
short to connect their pair of sites are not drawn at all. The hea
lines are guides to the eye, highlighting two of the trees in t
configuration.
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2002 PRE 60SEXTON, SOCOLAR, AND SCHAEFFER
in which an inactive branch of one tree is simply transfer
to another tree without becoming active. Pushes domin
the behavior of the system in the early stages of comp
sion, becoming more and more rare as compression co
ues and the number of inactive sites decreases.

The breaking of a bond, as mentioned in Sec. II B, is
final possibility for changing the network of active bond
Breaks are generally rare events. During full compression
a 40340 system, which undergoes approximately 20
events~pushes, chain additions, and breaks!, there are typi-
cally about five breaks.

The algorithm reaches completion when all bonds h
been activated. As explained above, further compres
would be homogeneous with allf i j

6’s increasing at precisely
the same rate. To compress one configuration on a 40340
lattice, generating one complete force curve, requires
proximately one hour of computation on a typical 200 MH
workstation. We have accumulated data for various latti
with at most a few thousand sites. Future efforts to optim
the algorithm should permit investigation of substantia
larger lattices.

Despite our reliance on linear methods for evolving t
system between gap events, it must be emphasized tha
absence of tensile forces introduces a strong nonlinearity
larger increments inD. An alternative approach to following
the entire evolution of the system would be to solve direc
for the configuration of the system at an arbitrarily chos
value of D by minimizing the nonlinear energy function o
Eq. ~1!. Such an approach might speed up the calcula
even with linear springs, and it would be essential if t
springs were nonlinear~e.g., Hertzian! under compression.

IV. MACROSCOPIC FORCE AS A FUNCTION
OF DISPLACEMENT

A. General remarks and a ‘‘mean-field’’ prediction

Figure 6 displays numerically computed curves ofF ver-
susD for a few rectangular systems of various sizes. A
cursory level, the force curves appear to have the fo
F(D);Dn, which correspond to lines of slopen on our log-
log plots. Interestingly, this exponent depends strongly
system geometry.

Closer inspection of Fig. 6 reveals both expected and
expected behavior. For any particular realization of the d
order, there is a region, sometimes substantial, on the log
plot for small values ofD in which the force curve appear
nearly linear because it is dominated by a single chain. Th
is also a crossover to linear behavior for largeD since, as the
fraction of active bonds approaches unity, the system
proaches the linear limit described in preceding sections.
intermediate regime is the one of interest, and the beha
there is rather complex. In many runs an exponentn.1 in
the intermediate regime can be readily identified. Howev
in other runs@see, e.g., Fig. 6~c!#, small-system statistics ten
to obscure the phenomena. It appears that completely reli
measurements of the exponents in the various regimes
require bigger systems, beyond the reach of our current
merical codes. Nevertheless, we believe that the results
systems of a few thousand grains support the conclus
drawn below.~See Ref.@5# for a discussion of a closely
related model.!
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In studying force curves for bead packs, several auth
have proposed a mean-field argument suggesting that
various granular systems one should observen5a11,
wherea is the exponent of the single-contact force law. Th
for our model the mean-field theory predictsn52. ~For the
reader’s convenience, we summarize a version of the the
in the Appendix. The treatment there is similar to that
Refs.@6# and@5#.! The argument is based on the assumpt
that the rates at which pairs of nearest-neighbor sites
proach each other may all be taken to be equal to the ave
rate of compression.

In Sec. IV C below we present numerical results for o
model showing thatn can be significantly less than 2 fo
some system geometries, and in Sec. IV D we seek to
plain the failure of the mean-field argument. In our view, th
failure casts doubt on the argument’s applicability to re

FIG. 6. Plots ofF(D) for several different system sizes. Lin
segments with labels indicating their slopes are added as guid
the eye. Labels in the lower right corners indicate system size.~a! A
short, wide system showing an exponent near 2.~b! A tall, narrow
system showing an exponent near 1.7.~c! A square system showing
apparently different behavior for different realizations of t
quenched random equilibrium lengths.~d! Data from 25 runs of a
40340 system. For clarity, points are plotted only at ten discr
values of F. @Note the different horizontal scale from~c!#. The
dotted line through the data is a power-law fit to the points sho
excluding the two highest forces. The exponent is 1.9.~e! A single
tree showing an exponent of 1.5.~f! Two different system sizes
with equal values ofNxNy

20.66, both showing an exponent of 1.8
The open circles represent one completed run of a 20380 system.
The filled circles represent one partially completed run of a 403225
system.
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PRE 60 2003FORCE DISTRIBUTION IN A SCALAR MODEL FOR . . .
granular systems. Useful supplementary information is c
ered in Secx. IV B and IV E.

B. Analytic results for limiting cases

It is instructive to consider two cases for which the for
curves can be explicitly calculated.

Case 1. Ny51. This system consists of only a single lay
of random-length springs, as shown in Fig. 7~a!. Assuming
the equilibrium spring lengths to be uniformly distributed
a finite interval, one immediately obtainsF}D2. In this case
the mean-field argument~the Appendix! is exact, as all gaps
do close at the same rate.

Case 2. Nx51. Because of the periodic boundary cond
tions, this case is equivalent to a single column of gra
without periodic boundary conditions, as shown in Fig. 7~b!.
Again we take the distribution of equilibrium lengths to be
square distribution of width 2e. In this case it is more con
venient to fix the forceF and compute the displaceme
D(F), since the compressive stress on each grain must b
same. Let us decompose the displacement

D5 (
n51

Ny

dn , ~5!

where dn is the displacement of thenth spring. WhenF
50, we havedn50 for eachn, the longer spring at eac
level being just at the threshold of compression. The gro
of dn with F depends only onan , the difference between th
equilibrium lengths of the two springs in thenth layer. Spe-
cifically,

ddn

dF
5H 1

k
if 0 ,F,kan

1

2k
if kan,F.

~6!

Note that thean’s are independent and all have the probab
ity densityP(a)5(2e2a)/2e2 for 0,a,2e.

The expected value ofdD/dF is defined as

K dD

dFL 5 (
n51

Ny E
0

2e ddn

dF
P~an! dan . ~7!

FIG. 7. Limiting models for whichF(D) is easily computed
analytically: ~a! an infinite row of springs with random length
(Ny51); ~b! an infinite column of single grains with two springs
every row (Nx51).
-

s

the

h

-

Using the fact that all the terms in the summation are eq
and performing the integration, we obtain^dD/dF&, which
in turn may be integrated to yield

^d&5H f 2
1

4
f 21

1

24
f 3 if 0 , f ,2

1

2
f 1

1

3
if 2 , f ,

~8!

whered[D/Nye and f [F/ke are the nondimensionalize
displacement and force per layer, respectively. Equation~8!
shows that, in this case, there is no simple power-law beh
ior in the largeNy limit. Note that Eq.~8! is approximately
linear nearf 50 „i.e., limf˜01@d(ln d)/d(ln f)#51…, and it is
linear near and beyondf 52. If we attempt to identify a
single power law for intermediate values off, the natural
choice is the derivatived(ln d)/d(ln f), evaluated at the poin
where this quantity is most slowly varying; i.e., whe
d2(ln d)/d(ln f)2 vanishes. This method yieldsf ;dn with n
51.27. . . , where we have returned to displacement as
independent variable.

The analysis of Case 2 shows that it is possible for
force curve to exhibit a region corresponding to a power l
than 2. It also shows that the emergence of a true power
should not be taken for granted in these systems. We fi
however, that in sufficiently wide systems, a power law do
arise~cf. discussion below!.

C. Numerical results

Short, wide systems.Figure 6~a! shows two typical force
curves for an 80320 system. It appears here that there is
regime in whichn*2, followed by the expected crossover
n51 at largeD. This observation lends some support to t
mean-field argument and is consistent with the claim
Gilabert et al. @7#, who studied the electrical analog of ou
model ~see Sec. IV E below!.

Tall, narrow systems.In a 203150 system, the exponentn
appears to shift noticeably. The best fit to the curve shown
Fig. 6~b! is n51.7 in the intermediate regime of interest. Th
error in this measurement is estimated to be60.1 on the
basis of fits made with different choices for which points
exclude from the intermediate regime. The data clearly r
out n52.

Roughly square system.An estimate ofn51.9 is obtained
from data on 40340 systems. Figure 6~c! shows data from
two 40340 systems. The apparent lack of consistent beh
ior is presumably due to finite size effects. Nevertheless,
ing data from 25 runs, an estimate ofn51.9 can be obtained
as shown in Fig. 6~d!. To obtain the dotted line in the figure
the data in the intermediate regime were fit to a power la
data from the initial linear regime and data from the tw
largest forces in the figure~where we expect a crossover
linear growth! were excluded in making this estimate for th
exponentn.

We suggest that the variation of exponent with asp
ratio can be traced to the tree structure in the system. S
cifically, we conjecture that if most of the force is transm
ted within a single tree, then a smaller exponent will
observed, whereas if the force is spread over many tree
larger exponent. We interpret the following numerical e
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2004 PRE 60SEXTON, SOCOLAR, AND SCHAEFFER
periment as support for this conjecture. Starting with
60360 grid, we removed all sites lying outside the 90° co
emanating from the center of the bottom boundary. We t
measuredF(D) for this reduced system. In this geometry a
the active sites at every stage of compression are conne
to the floor at the same point, so all the active bonds
contained within a single tree. As shown in Fig. 6~e! the
exponentn is close to 1.5, indicating that the behavior with
a single tree has a different character than in a system
many trees.

To explore this issue further, we measured the rate
which trees expand as a function of heightin the initial con-
figuration. ~Roux et al. have investigated a similar, but no
identical, model@3#.! While building the initial configura-
tion, we keep track of the root of the tree associated to e
site, thereby counting the numberT(z) of trees that survive
up to layerz. Since only initial configurations are involved
not their subsequent evolution, rather large systems ca
simulated. For a system of width 50 000 with data collec
for up to 107 layers, we obtained an excellent power-law
T(z)'Az2g, with g50.66 andA56.53104, with only a
slight deviation for very small heights (z,10) and very
large heights@corresponding toT(z),5]. The exponentg is
closely related to the wandering exponent for the optim
directed path in a random environment, which is known to
2/3 for a 111-dimensional system@8#. Note that A
51.3Nx . @Incidentally, sinceT(1)5Nx , it is clear that the
power-law fit must be inaccurate forz of order 1.] General-
izing from this system to one of arbitrary width, we estima
that in the initial configuration of anNx3Ny system, ap-
proximately 1.3NxNy

2g trees will reach the top layer.
Let us speculate on the possible consequences of thi

timate. The rates of advance of all sites within a single t
are correlated, since compression of the bottom bond of
tree affects the rates of all the branches above it. We th
fore expect the sequence of gap closings to depend upon
initial tree structure. Assuming that the system obeys
simple anisotropic scaling law, we conjecture that in lar
systems the exponentn is a function ofNxNy

2g alone. Lim-
ited support for this conjecture comes from two addition
runs on 20380 and 403225 systems. In both case
NxNy

20.66'1.1, and in both cases we observe power-law
havior with n'1.8, as shown in Fig. 6~f!. A more rigorous
test would require runs on significantly larger systems,
which a more efficient code is needed. Note that the 403225
system was already too large for us to run to completion;
curve in Fig. 6~f! ends well before the crossover to the line
regime occurs. Note also that in the 403225 system, a clean
power-law regime extends over at least two decades inD and
three decades inF, giving us some confidence that a tru
power-law regime does exist in large systems.

A consequence of our scaling conjecture is that increas
the system size while keeping the aspect ratiofixed should
result in exponents that eventually approach that of a w
short system. As we have shown thatn52 in the`31 limit
~Case 1, Sec. IV B!, we expect to observe the mean-fie
result n52 in very large, approximately square systems
well.

D. Why the mean-field argument fails

The key assumption in the mean-field argument is t
nearest-neighbor sites approach each other at the mean
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pression rate. In terms of the probability density for inters
distances, the assumption is expressed quantitatively in
~A5! of the Appendix, which asserts that the shape and wi
of the distribution of intersite distances are independent
the compressionD5Nyd. As discussed in the Appendix, i
our model the probability densityP(x,d) is well defined
only for x.0; i.e., for bonds whose springs are compress
However, even restricting our attention to the active bon
we find that our data are inconsistent with the above assu
tion. Specifically, in Fig. 8~a! we show the probability den
sities for the~nonzero! forcesf, wheref 5max$kx,0%, at vari-
ous stages of compression of a 40340 system, and it is clea
that the distribution broadens asd increases. More quantita
tively, in Fig. 8~b! we plot the widths of the best fits to th
data by Gaussian distributions restricted to$x.0%, for sev-
eral values ofd.

The broadening ofP(x,d), which occurs during the early
and intermediate regime of compression, is a simple con
quence of force balance at branching points of chains
active bonds. Consider a site at which three active bo
meet, forming a ‘‘Y’’ ~either right-side up or upside-down!.
Because there are no tensile forces, the force in the unpa
branch of theY is greater than either of those in the pair
branches. Moreover, as theY is further compressed, the rat
at which the force in the unpaired branch increases m
equal thesum of the rates of increase of the forces in th
paired branches. Since the larger force evidently increa
more rapidly than the two smaller forces~the forces almost
always being increasing functions ofD!, the distribution
broadens.

During the late regime of compression, the addition
active bonds will convertY’s to X’s, for which any correla-
tion between force and bond compression rate must be m
subtle. Indeed, when all of the bonds are activated, all bo
compress at exactly the same rate and the force distribu
simply shifts uniformly to higher forces; the mean-field a
sumption becomes exact. Thus, we expect to observ
broadening of the force distribution during early and inte
mediate stages of compression, with a rate that decreas
the density ofY’s becomes smaller. This is precisely th

FIG. 8. Distribution of spacings between nearest-neigh
grains for several stages of compression of a 40340 system.~a!
From narrowest to broadest, the curves represent active bond
sities of 0.2, 0.4, 0.6, 0.8, and 1.0, which correspond to ensem
averaged total forces of 0.85, 4.3, 11.2, 27.9, and 116.13ke. The
data represents averages of 25 runs.~b! The width of the fitted
Gaussians as a function ofD on a log-log scale. Horizontal erro
bars indicate the range of values ofD obtained for a given density
of active bonds in different runs. The thin lines in the left plot a
the Gaussians used for the maximal and minimal width estimate
each stage. The line of slope 1.0 on the right is a guide to the
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behavior displayed in Fig. 8, where the width of the posit
x portion of the distribution is seen to grow roughly as
power ofD less than unity for smallD and level off at high
compression. A quantitative calculation of the rate of bro
ening would require a detailed understanding of the statis
of branching in the active network and is beyond the sc
of this work.

Let us argue that the broadening of the force distribut
generically leads to an exponentn smaller than the mean
field value. Suppose, for definiteness, thatP(x,d) has a
sharp leading edge atx1(d); i.e., that P(x,d)50 for x
.x1(d) and limx˜x

1
2 P(x,d) is bounded away from zero

The existence ofY’s in the active bond network leads to a
advance of the leading edgex1(d) that is more rapid than the
advance ofd itself. Taking into account the formation of ne
contacts and branch points during compression, and ass
ing simple asymptotic behavior, we expect thatx1(d);db

with b,1 @9#. Thus, to lowest order ind, we find F
5*0

x1P(x,d)kx dx;d2b, and thereforen<2. Corrections to
this exponent should become significant ford of order unity,
which is also the order of the width ofP(x). This expecta-
tion is consistent with Fig. 6, where it can be seen that
crossover to the linear regime for largeD occurs for D
*Ny/5, which is the last half decade in the plots.

These qualitative results do not depend on the linea
~under compression! of the springs in our model, nor do the
depend on the dimensionality of the model. They should a
apply to thevertical forces in a system with horizontal de
grees of freedom, providing only that the creation of n
branch points is sufficiently common. Thus, the mean-fi
argument seems problematic for physical bead packs.
analysis shows that new contact formation can lead to ex
nents smaller than the mean-field value, which is an imp
tant point in light of other mechanisms proposed to expl
experimental observations of this exponent@6,10#.

E. Relation to random resistor networks

The analogy between the elastic properties of a netw
of linear springs and the electrical properties of the sa
network of resistors has been exploited in numerous stu
@11#. In order to clarify the relation between our model a
others, and particularly with random networks near the
rected percolation threshold, let us consider the analog
some detail. We will see that there are good reasons to
skeptical of the applicability of percolation model results
our model, but there is also an intriguing numerical coin
dence.

There is a formal identity between our equations for m
chanical equilibrium

f i j
652k~ui , j2ui 61,j2si j

6! ~9!

and the electrical equations

I i j
65

1

R
~Vi , j2Vi 61,j2v i j

6!. ~10!

In the latter equation,I i j
6 specifies the current between sit

that are joined by a resistanceR in series with a battery
generating a potential differencev i j

6 . Note that the resistors
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conductance plays the role of the springs’ stiffness. T
property that the springs function only under compress
can be modeled in the electrical system by the insertion
perfect diodes, all directed ‘‘downward,’’ in series with ea
resistor. Rouxet al. studied this very model@7#, but did not
report results for varying aspect ratios or single trees and
not study its relation to theq model, which had not yet bee
introduced.

A system with batteries is substantially more complica
than a simple, randomly diluted resistor-diode network.
relate the randomly diluted network at the directed perco
tion threshold to our model just beyond the initial line
regime, one must first assume that the network of ac
springs in our model has the same structure as the cur
carrying paths in a directed network of resistors placed
random on the lattice. One must also assume a relation
tweenD of our model and the probabilityp that a bond exists
in the percolation system. The natural assumption h
would be that the probabilityp2pc is proportional toD,
wherepc is the critical value for percolation, sinceD50 is
the point where a single force chain~or current carrying
path! first forms and on average the bonds in our model
compressed by an amount proportional toD @11#. In our
system, however, the batteries play two roles. First, they g
erate potentials that affect the current distribution even w
all the diodes are forward biased, which would correspond
a trivial, homogeneous state of the simple resistor netwo
Perhaps more importantly, however, they determinewhich
diodes will be forward biased for a given applied potent
difference across the whole network. This dynamical proc
of selecting the current carrying paths may or may not yi
structures well-modeled by the random addition of resist
links in a percolation model.

In spite of the difficulties in establishing a connection,
is interesting to compare our results for the power l
obeyed by the stiffnessdF/dD to the conductivity exponen
obtained from the theory of directed percolation in random
diluted resistor networks@12,13#. The conductivity exponen
for directed percolation has been calculated both numeric
and using renormalization group methods and appears t
approximately 0.760.1 @12,13#, which corresponds to a
value of 1.760.1 for the exponentn. The fact that this agree
with our measurements on tall, narrow systems deserves
ther study. Other authors have investigated additional de
of the statistics near threshold in our model and argued
the system is closely related to the percolation one@14#.

V. STATISTICS OF FORCES ON INDIVIDUAL GRAINS

We now consider the statistics of forces transmitted
individual springs, exploring, in particular, the relation of o
results to theq model of Coppersmithet al. @2#. Our model is
simpler than the granular packings that theq model was
intended to describe. However, our model would appea
be a better candidate for description by theq model than the
original granular packings, since we have removed the t
sorial stresses from our system but still have contacts wh
formation is governed by quenched randomness.

In the q model in two dimensions,qi , j refers to the frac-
tion of the force on site (i , j ) from above that is transmitted
to its neighbor at (i 21,j 21), the complementary fraction
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12qi , j being transfered to site (i 11,j 21). One assumes
that eachqi , j is a random variable that~i! is independent of
the otherq’s, and~ii ! has the same distributionh(q) at every
site, independent of the force supported by that site.

Analytical studies of theq model show that the distribu
tion of forces supported by a single grain has an exponen
tail at large forces wheneverh(q) is nonvanishing atq51
@2,15,16#. By contrast, the force distributions in our mode
plotted in Fig. 8, show no evidence of exponential tails.
no stage during the compression does it appear that
q-model distributions are a good match for the distributio
we observe. In particular, consider the fourth curve from
left in Fig. 8, which is made at a compression for whi
almost allsitesare active but there remains an apprecia
fraction of inactivebonds. The distribution ofqi , j ’s directly
measured from our data in this regime@see Fig. 9~a!# is rea-
sonably represented by

FIG. 9. Distribution ofq values and comparison with predic
tions of theq model.~a! The frequency distribution ofq’s averaged
over 25 configurations of a 40340 system. The different symbol
indicate different stages of compression, with larger values aq
51/2 corresponding to larger compressions. All distributions
normalized to unity, but the points atq50 andq51 are off scale in
all cases except for the fully compressed one.~b! Comparison of the
distributions of total force supported by a single grain in our mo
and in theq model with a similar frequency distribution ofq values.
~See text for details.! The open circles are averages over the sa
25 configurations used to generate the open circles in~a!. The heavy
dots are averages over 100 configurations of theq model.~c! Sepa-
ration of theq distribution from one curve in~a! into components
corresponding to different levels of supported force. The data in~c!
correspond to the open circles in~a!. The bins used are (0,W) ~open
circles!, (W,2W) ~open triangles!, (2W,3W) ~filled triangles!, and
(3W,`) ~filled circles!, where W is the average force
supported by a single grain.~d! The correlation functionCqw

[^(qi j 2
1
2 )2(wi j 2^wi j &)&. The data shown are from one realiz

tion of a 40340 system. The heavy dot indicates the point cor
sponding to the data in~b! and ~c!.
al

t
he
s
e

e

h~q!50.1@d~q!1d~12q!#10.820.2 cos~2pq!,
~11!

for which 20% of theq’s are either 0 or 1. Theq model
would predict an exponential tail in the single-grain for
distribution @2#. Even for the small systems we study he
the exponential tail would be clearly distinguishable from t
rapid decay we observe. Figure 9~b! compares numerical re
sults from our model and from a simulation of theq model
with h(q) given by Eq.~11!. For theq-model simulation,
forces on the top row were chosen randomly from a unifo
distribution on the interval~0,2!.

To understand the discrepancy between our results
the predictions of theq model, we examine our data as r
gards assumption~ii ! above: i.e., that the distribution ofq at
each site is independent of the force supported by that
Figure 9~c! shows the distribution ofq’s obtained from equi-
librium configurations of our model corresponding to t
same conditions as in Fig. 9~a!, but separated according t
the force supported by the site. Different symbols in the p
indicate different levels of force as described in the figu
caption. It is clear that the contribution toh(q) from larger
forces is peaked more strongly about 1/2 and has li
weight near 0 or 1, which explains why theq-model predic-
tion fails for this system. As a quantitative measure of t
correlation, we have computed the covarianceCqw

[^(qi j 2
1
2 )2(wi j 2^wi j &)& for our model, wherewi j [ f i j

2

1 f i j
1 and the averages are performed over space for

realization of a 40340 system.~The square in this definition
is necessary because left-right symmetry guarantees th
correlation function linear inq21/2 would vanish.! Cqw
vanishes identically in theq model sinceqi , j and wi , j are
independent in that model. As shown in Fig. 9~d!, Cqw de-
velops a significant negative value when the system is un
compression, indicating that larger forces are associated
q’s closer to 1/2. The heavy dot in the figure indicates t
point corresponding to the data in 9~b! and 9~c!.

Noting thatCqw does indeed vanish for very weak com
pressions and that the force distributions we have meas
in this regime do not cover a large enough dynamic range
cleanly distinguish Gaussian from exponential tails, it a
pears possible that theq model could describe this regime
Moreover, when the single-grain forces are plotted in un
of the average force per grain rather than on an abso
scale, the distributions at weak compression are recogn
as being rather broad, and may even be consistent with
pectations based on theq model with a large fraction ofq’s
set to 0 or 1. Thus, theq model may still give useful insights
into the nature of force propagation in the weak compress
regime.

It should also be noted, however, that the corresponde
between configurations of our model and stress fields ge
ated by theq model is nontrivial. Weakly compressed co
figurations in our model contain long force chains th
branch only occasionally, as is the case in theq model with
a large fraction ofq’s set to 0 or 1. In theq model, however,
these chains correspond to pure random walks with a w
dering exponent of 1/2, whereas in our model we exp
chains with a wandering exponent of 2/3, as they corresp
to optimal directed paths in a random environment. It is n
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clear to us whether this difference and others of sim
subtlety should affect the single-particle force distribution

VI. CONCLUSIONS

We briefly summarize the results of our study of the s
lar model, discuss its generalization to three dimensions,
finally draw two conclusions concerning the implications f
real systems or more realistic models.

In the context of a toy model, we have tested argume
that have been applied to stresses in static, noncohe
granular materials. Further study of the model is need
especially simulations of larger systems, but already two
portant facts have been established.~1! Correlations in the
stress configuration are responsible for substantial effe
both at the level of single-grain forces and that of mac
scopic stresses.~2! Depending on the~properly scaled! as-
pect ratio, new contact formation may play a decisive role
determining the macroscopic stress-strain relationship, w
sufficiently tall systems showing power-law behavior with
nontrivial exponent. Regarding~1!, we have identified two
important effects:~i! the distribution of forces broadens un
der compression because of force balance constraints at
where three active bonds meet; and~ii ! larger forces tend to
divide more evenly between supporting grains as a resu
the dynamical process that determines the structure of
active bond network. Theories that neglect these correlat
fail when applied to our model.

One may wonder whether qualitatively new featur
might appear in a 3D generalization of our model in whi
the vertical direction is taken to be the 111 direction o
simple cubic lattice. As a preliminary check, we have m
sured the statistics of trees in the initial configuration a
observed their general morphology. The number of surviv
trees decays asz21.2 and the trees remain relatively compa
In other words, the diameter of surviving trees grows asz0.60

~compared toz0.66 in two dimensions! and the branches o
separate trees do not become heavily entangled with e
other. On this basis, we conjecture that the essential phy
of the stress-strain relation will not be qualitatively differe
in three dimensions. In particular, we expect a variation
the exponentn with the scaled aspect ratio.

We draw two general conclusions. First, it appears t
the mechanism for the broadening of the vertical force d
tribution should be present in the full tensorial problem
well, and therefore should be re-examined as a possible
planation for the observation of smaller exponents than th
derived from the mean-field argument. Experiments mea
ing the dependence of the exponentn on aspect ratio would
be especially interesting. Second, in a bead pack in wh
grains suffer appreciable distortion, we expect correlation
a type that renders theq-model predictions inaccurate. It ap
pears possible that theq model is a good approximation fo
the weak-compression regime, though there are subtle di
ences between configurations of our model andq-model con-
figurations that warrant further study. Our model may
useful in further studies of the crossover between the
regimes.
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APPENDIX: THE MEAN-FIELD ARGUMENT
PREDICTING n52

In this appendix, we summarize a mean-field argum
that was developed to describe forces during the comp
sion of a bead pack between parallel plates~See, e.g., Refs
@6,5#.!

We define theoverlap between two adjacent beads
(d02d), whered is the distance between their centers a
d0 is the nominal distance at which the beads touch but e
no force. Note that because of the minus sign, the overla
positive for beads in contact, and negative for beads no
contact.

We introduce the random variableX to be the overlap
between two randomly chosen adjacent beads. Thus,
sample space forX includes both the choice of configuratio
~spring lengths in our model!, and the choice of a pair o
adjacent beads. Of courseX also depends on the displac
mentD of the floor plate.~As in Sec. I, we normalize so tha
nonzero forces start atD50.) We rescale the independe
variable, definingd5D/Ny , where the bead pack isNy lay-
ers thick. LetP(x,d) be the probability distribution forX.
The average force per spring,s, is given by

s~d!5E
2`

`

f ~x!P~x,d!dx, ~A1!

where f (x)5max$kx,0%. Since

f ~x!50 for x,0, ~A2!

the integral may be restricted to (0,`). Of course, by our
normalizations,

P~x,0!50 for x.0, ~A3!

sos(0)50. The rescaled variabled5D/Ny equals the aver-
age change in the overlapX resulting from motion of the
floor; thus,

E
2`

`

xP~x,d!dx5d1d0 , ~A4!

whered0 is the average overlap whend50.
The first main assumption of the mean-field argument

considerable strengthening of Eq.~A4!: One assumes that th
shape and width of the probability distribution are indepe
dent ofd, i.e.,

P~x,d!5P~x2d,0!. ~A5!

Substituting Eq.~A5! into Eq. ~A1! and rescaling Eqs.~A2!
and ~A3!, we deduce that

s5kE
2d

0

~x1d!P~x,0!dx, ~A6!

which is equivalent to Eq.~1.2! of Ref. @6#.
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The second main assumption of the mean-field argum
is thatP is continuous in both arguments and

lim
x˜02

P~x,0!5C, ~A7!

where C is a finite positive constant. Combining the tw
assumptions, we find that
da

nd

et
nt
s5kE

2d

0

~x1d!@C1O~x!#dx, ~A8!

which immediately yieldsn52. Under assumption~A5!, the
only way to accommodate a value ofn less than 2 is to posi
that the limit in Eq.~A7! is infinite.

Note that in our model, the distribution forX is not
uniquely defined forX,0, since inactive grains are free t
relocate slightly. Despite this ambiguity, in Sec. IV D we a
able to test hypothesis~A5! by focusing on positive values
of X.
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