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Force distribution in a scalar model for noncohesive granular material
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We study a scalar lattice model for intergrain forces in static, noncohesive, granular materials, obtaining two
primary resultsi(i) The applied stress as a function of overall strain shows a power law dependence with a
nontrivial exponent, which moreover varies with system geometry;(@ngdrobability distributions for forces
on individual grains appear Gaussian at all stages of compression, showing no evidence of exponential tails.
With regard to both results, we identify correlations responsible for deviations from previously suggested
theories[S1063-651X99)08808-X]

PACS numbgs): 81.05.Rm, 62.46:i, 02.50.Ey

I. INTRODUCTION Though we cannot hope to capture the true physics of
tensorial stresses or of frictional effects in this manner, we

Attempts to understand stress distribution in static, nong4, study the validity of arguments that have been applied to

cohesive, granular materials have uncovered a rich structui@a| granular systems and should equally well apply to our
of force chains that currently is poorly understddd. Al-  toy model. In particular, we compare the distribution of in-
though mechanical systems such as bead or granular padlergrain forces generated by our model to the distribution
ings that are subject to uniaxial compression seem straighpredicted by theg model of Coppersmittet al. [2], and we
forward, they harbor fundamental theoretical challengesompare the stress-strain power law generated by our model
concerning the connection between the micro and macré that expected on the basis of a mean-field argument. Our
scales. Such systems are far from thermal equilibrium, sincEesults provide a warning: in neither case are the theoretical
thermal energy scales are negligible compared to the potefredictions borne out by the numerics.
tial energies stored in elastic deformation of the grains. In
addition, the force between grains is strongly nonlinear, as it
vanishes identically when the grains are not in contact. The structure of our model is shown in Fig. 1. Grains are
In this paper, we report results and analyses of a toylaced at the even-parity sites of &l2<(Ny+ 1) cubic lat-
model for the compaction of a granular material. Our modetice with lattice constanb. We refer to such a system as an
consists of “grains” placed on a square lattice and con-* N,XN,” system. Excluding the sites on the lower bound-
nected by vertical springs. The grains are constrained tary, it containsN,N, grains. Grains are constrained to move
move only in the vertical direction, so the model treats forcesonly in the vertical direction, as if sliding on fixed, friction-
and stresses axalar quantities(see Fig. 1 Geometric dis- less wires(shown as thin lines in the figureWe let u; ;
order is introduced in the model by assigning to each springlenote the vertical displacement of the grain at lattice site
an equilibrium length drawn randomly from a square distri-(i,j) from its nominal heightib, with u; ;>0 for upward
bution. The model contains no provision for slippage of ex-displacements. Between every two nearest-neighbor grains
isting contacts during compression. The potential energy aghere is a vertical spring. All of the springs respond linearly
sociated with a contact is a simple function of the degree tainder compression, with spring const&anbut they produce
which the associated spring is compressed and the macrae force under extension. The energy of the spring between
scopic process of compression is reversible. grainsi,j andi+1,j—1 is taken to be

II. DEFINITION OF THE MODEL

=

+ 2
Ei = Ek(ui,j—sij—uiil,j—l) if (uij—s

*
ij ~Uiz1j-1)<0

@

0 otherwise,

Wheresﬁ ands;; are independent, quenched random vari-the grains to have arbitrary shapes and the uncompressed
ables designating the different uncompressed lengths of thgpring length to be the vertical spacing between grain centers
springs. We takeﬁ ands;; to be distributed uniformly over when the grains are just barely in contact.

the interval (- €,€). Note that whers= 0, the uncompressed The system is taken to satisfy periodic boundary condi-
spring has lengtlb, the lattice constant. One may imagine tions in the horizontal direction. All grains at the top are
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FIG. 2. Configurations of active bonds in a>X80 system at
three different stages of compression.

beF(A)=KA for A>0 andF(A)=0 for A<O, whereK is

a constant determined by the randéra. By contrast, with
random spring lengths we capture some of the geometric
disorder of real granular materials, which inevitably intro-
duces nonlinearities associated with the formation of new
contacts during compression.

B. General features of equilibrium configurations

FIG. 1. Scalar model. Diamonds represent rigid grains that slide . . . e
_ : ) ! . . . We will refer to a spring under compression as an “active
on frictionless, vertical wires. Squiggly lines represent springs with

identical spring constants but differing equilibrium lengths. Grainsb_ond'” and to_"?‘ S,'te Conne,Cted t,o such a spr!qg as an "active
cannot penetrate the ceiling or floor. site.” An equilibrium configuration forA positive, but not

too large, has a mixture of active and inactive sites and

constrained from above by a rigid “ceiling” and therefore bonds. For a given set f;’s, the equilibrium configuration
satisfy u; y <0. On the bottom row, grains are constrainedof active sites and bonds is unique, although the exact posi-
by a rigid ¥‘f|oor” whose heightU is an independent vari- tions of inactive sites are not determined. This uniqueness

able; thusy; ¢=U. Let U, denote the maximum value &f follovys from the strict convgxity of the total energy as a
such that no springs are compressed. Typicdlly which is ~ function of the lengths of active bonds. _ _
a function of the randors;s, is negative and of the order of ~ Figure 2 shows three equilibrium configurations with the
Nye in absolute valugit cannot be less thar Nye). Below — same set oﬁg’s on a 40<40 lattice, for different amounts of
we measure the floor height in terms of the incremental varicompression. Only the active bonds are shown, with line
ableA=U—-Uy. thickness proportional to the force transmitted. Also shown
Though we use the terms “floor,” “vertical,” etc., for are two bars representing the ceiling and the floor.
convenience, there is no gravity in the model and there is Let F(A) be the total force exerted by the system on the
complete statistical symmetry between the up and down dieeiling. Figure 3 shows a typical force curve for a0
rections. The algorithm discussed below for determiningsystem, together with the fractions of sites and bonds that are
equilibrium configurations explicitly breaks this symmetry, activated. Elementary considerations reveal the limiting be-

though the configurations it produces do not. haviors of F for large and smallA. For very smallA, the
force on the ceiling is due to a single chain of activated
A. Meaningful parameters springs that reaches from top to bottom. This chain, which
Our model apparently depends on the parametarsdk,
but these merely set the scales for distance and force. For th 120 ' R o : ]
rest of this paper, numerical values for distan¢sgring- ///
length variationss;; , grain displacements, ;, and boundary 100 - 7 8%
displacementd) will be quoted in units ofe; and forces 4 e 1% £
(individual forcesfif and the total forcé= on the ceiling in ; 80 r // 3
units of ke. P J e 1062
Although thewidth of the distribution of spring lengths § €0 / / 8
scales out of the problem, ishapecould conceivably make E /! 1 0.40
a difference. Nevertheless, we do not expect the precisel‘l_é 40 /! §
shape to be important as long as the probability of having i 8
very large uncompressed lengths decays sufficiently rapidly 20 F // 194c
In any event, we consider only the square distribution. /
Let us contrast the alternative of random spring constants 0= ' ! ! — 0
0 20 40 60 80

with the random equilibrium lengths we study here. If k'e
were random but all equilibrium lengths were equal, then as
A increased all the springs would begin to be compressed FIG. 3. Typical force curvesolid line) for a 40x40 system
simultaneously at)=0 and the system would be perfectly together with curves showing the fraction of active sitdstted
linear for allA>0; the force-versus-displacement law would line) and the fraction of active bondglashed ling

Displacement of bottom (units of £)
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FIG. 4. Sequence of configurations in which the central bond is % Y §> Sg% g@ ¢ §
originally active, but becomes inactive after other bonds become FIG. 5. Typical initial configuration. All springs shown are at
active. Cons_equently, the total _stif_fness .Of t_he network decregses %?(&Ctly zero compression. Springs with equilibrium lengths too
the system IS comp_ressed. Th|_(tk||n) ‘?’Ohd lines represent acltive — hort to connect their pair of sites are not drawn at all. The heavier
(inactivg springs withs=0. Thick (thin) dashed lines represent lines are guides to the eye, highlighting two of the trees in this
active (inactive springs with equilibrium lengtls= — €. Springs configuration. '
not drawn are assumed to have small enough equilibrium lengths
that they are never active in this sequerdde/dA is smaller for the
third configuration than for the second, althoughitself has in-  This configuration can be thought of as the packing that
creased. would result from an infinitesimal gravitational force acting

on the system(Strictly speaking, we sat; o=0, march up-
follows the directed path(j) through the lattice that yields ward, determinéJ , from the height reached, and translate all

the highest value oE'Y.s; , produces a force linear in, ~ displacements accordingly.
g j=1% P A typical initial configuration is shown in Fig. 5. Sites

1 joined by line segments are separated precisely by the equi-
F(A)= N—A (A smal)). (2 librium length of the spring between them. Springs that are
y not long enough to connect their two sites are not drawn.
. . ) Already one can see that there is a rich geometric structure
When A is very large, all of the springs in the system arepjgden in this model, quite similar to that described by Roux
compressed. The system is then again entirely linear: best a1, [3]. The heavy lines in the figure highlight structures
cause all of the springs have the same stiffness, we call “trees,” consisting of all sites that are connected to
the same site on the first layer.

We refer to the distance between the upper end of an
inactive spring and the site to which it will eventually con-
nect as a “‘gap.” Note that sizes of the gaps reflect the struc-
ture of our initialization algorithm. We have moved all the
grains to their lowest possible position, concentrating all of
the small gaps that might be present in a chain into a single
large gap at the top of a branch of a tree.

To generate the force curve, we maintain a list of active
sites and their active bonds, and we keep track of changes in
L ; . . the tree structure of the uncompressed chains as the floor is
creasewith increasingA. Occasionally bonds that are active __. . ! o

raised. For any fixed set of active bonds, the’s increase

at small values oft become inactive for larges, thus re- linearly with A, since all of the active springs are linear. It is
ducing the effective spring constant of the network. The sim- y ' pring :

plest example of this behavior is illustrated in Fig. 4. Thetherefore a straightforward linear problem to solve for the

figure shows a sequence of configurations in which the ce ate, du/da, at which eachu;; advances. Advancing\

tral bond is originally active, but becomes inactive due to thehrOngh one stage invalves solving kay; for some arbitrary

effective stiffening of other parts of the network when addj-"crease |m,.for Whlch we employ an |ter§1t|ve plconju,gate
tional bonds are activated. gradient routing4], using the current configuration ufyl- s

as an initial guess for the solution. The solution is used to
determine the rates of advance of all the active sites. The rate
. NUMERICAL ALGORITHM of advance of each inactive site is equal to that of the active
The algorithm we employ for generating equilibrium con- site that supports it thrqugh an uncompresged chain. The
rates are used to determine the valueladt which the net-

T o ot i oo espenis ot Yok oplogy changes T ' ae hen updatd accor-
g ’ y P . g to the calculated rates, the list of active sites or the tree

9 P X g g The updating of the network topology is necessitated ei-

F(Ar)alt'ztr?rt'll%gcf(r)?mA ztotﬁgqn?[.);ﬁ)l'C'gzovr:'t'gg Z\ée%ﬁ]?n' ather by the closure of a gap or by the breaking of a bond. The
\guration. 1o constru inftial, u press I9uras osure of a gap can generate one of two types of events.
tion, we begin withu; o= U, for all i and march up layer by

h First, it can cause an additional set of sites to be activated,
layer applying the rule which increases the size of our active site (ishd also in-
B N creases the size of the linear problem that must be solved on
U j=max(Ui—1j-1+s;),(Uir1j-1FS;)} (4 the next iteration Second, it can result in a “push” event,

2N
N

*A+C (A large, 3
y

F(A)=

whereC is a(negative constant that depends on the random
sﬁ 's and is difficult to compute.

In general, as\ is increased from zero, additional chains
are activated anB (A) increases. In fact it can be shown that
F must increase monotonically with (this is whyC must be
negative. Surprisingly, however, the slope B{A) mayde-



2002 SEXTON, SOCOLAR, AND SCHAEFFER PRE 60

in which an inactive branch of one tree is simply transferred 10*
to another tree without becoming active. Pushes dominate . | @ | )
the behavior of the system in the early stages of compres e
sion, becoming more and more rare as compression contin 20 17
ues and the number of inactive sites decreases. 100 L i

The breaking of a bond, as mentioned in Sec. Il B, is the 10
final possibility for changing the network of active bonds. + 80x20 P 20x150
Breaks are generally rare events. During full compression of 102 L—— L , 107 L——1 PP RT IS
a 40x40 system, which undergoes approximately 2000
events(pushes, chain additions, and breakbkere are typi-
cally about five breaks. © @

The algorithm reaches completion when all bonds have% 10 L 102 L .
been activated. As explained above, further compressior2
would be homogeneous with aﬂilj?’s increasing at precisely
the same rate. To compress one configuration on >a440
lattice, generating one complete force curve, requires ap-@,1 & 40x40
proximately one hour of computation on a typical 200 MHz & T pgpL— ‘
workstation. We have accumulated data for various latticeaw 107 10
with at most a few thousand sites. Future efforts to optimize
the algorithm should permit investigation of substantially — 1¢® [ ]
larger lattices. | @

Despite our reliance on linear methods for evolving the 10
system between gap events, it must be emphasized that tr
absence of tensile forces introduces a strong nonlinearity fo

3

4

w
=
= 10
5}

force |

1.8

I
10 o 20x80

larger increments inh. An alternative approach to following 10° - 60x60 L

the entire evolution of the system would be to solve directly |, (Single tree) . 40x225

for the configuration of the system at an arbitrarily chosen '® 10" 102 10°  10* C 107 10° 100 10¢  10°
value of A by minimizing the nonlinear energy function of A (units of £) A (units of €)

Eqg. (1). Such an approach might speed up the calculation
even with linear springs, and it would be essential if the
springs were nonlinede.g., Hertziah under compression.

FIG. 6. Plots ofF(A) for several different system sizes. Line
segments with labels indicating their slopes are added as guides to
the eye. Labels in the lower right corners indicate system &é
short, wide system showing an exponent nea2A tall, narrow
IV. MACROSCOPIC FORCE AS A FUNCTION system showing an exponent near 1¢j.A square system showing
OF DISPLACEMENT apparently different behavior for different realizations of the
guenched random equilibrium lengthg) Data from 25 runs of a
40x40 system. For clarity, points are plotted only at ten discrete
Figure 6 displays numerically computed curvesFofer- values of F. [Note the different horizontal scale frorft)]. The
susA for a few rectangular systems of various sizes. At gdotted line through the data is a power-law fit to the points shown,
Cursory |eve|, the force curves appear to have the fornﬁxcludlng the two hlghest forces. The equnent is (leDA S|ng|e
F(A)~A”, which correspond to lines of slopeon our log- trge showing an exponﬁrcl)tegf 1.6) Twoldlﬁerent system sizes
log plots. Interestingly, this exponent depends strongly orVith equal values oN,N, ™, both showing an exponent of 1.8.
system geometry. The open c_:lrcles represent one co_mpleted run of &8 system.
Closer inspection of Fig. 6 reveals both expected and un]’he filled circles represent one partially completed run of 2225
expected behavior. For any particular realization of the disSYS®™-
order, there is a region, sometimes substantial, on the log-log
plot for small values ofA in which the force curve appears In studying force curves for bead packs, several authors
nearly linear because it is dominated by a single chain. Therkave proposed a mean-field argument suggesting that for
is also a crossover to linear behavior for ladgsince, as the various granular systems one should obseimve a+1,
fraction of active bonds approaches unity, the system apaherea is the exponent of the single-contact force law. Thus
proaches the linear limit described in preceding sections. Théar our model the mean-field theory prediats-2. (For the
intermediate regime is the one of interest, and the behaviarader’'s convenience, we summarize a version of the theory
there is rather complex. In many runs an exponentl in  in the Appendix. The treatment there is similar to that of
the intermediate regime can be readily identified. HoweverRefs.[6] and[5].) The argument is based on the assumption
in other rungsee, e.g., Fig.®)], small-system statistics tend that the rates at which pairs of nearest-neighbor sites ap-
to obscure the phenomena. It appears that completely reliabfgoach each other may all be taken to be equal to the average
measurements of the exponents in the various regimes witate of compression.
require bigger systems, beyond the reach of our current nu- In Sec. IV C below we present numerical results for our
merical codes. Nevertheless, we believe that the results fanodel showing thatr can be significantly less than 2 for
systems of a few thousand grains support the conclusiorsome system geometries, and in Sec. IV D we seek to ex-
drawn below.(See Ref.[5] for a discussion of a closely plain the failure of the mean-field argument. In our view, this
related mode). failure casts doubt on the argument’s applicability to real

A. General remarks and a “mean-field” prediction
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O (b) Using the fact that all the terms in the summation are equal
I % and performing the integration, we obtaidA/dF), which
E % ¢ % % $ $ % $ Iﬁ in turn may be integrated to yield
—/— 1 2 1 3
% % f—Zf +ﬂf if 0<f<2
—_ =11 1 ()
¢ 3 543 if 2<f,
|

FIG. 7. Limiting models for whichF(A) is easily computed Where 6=A/N,e and f=F/ke are the nondimensionalized
analytically: (&) an infinite row of springs with random lengths displacement and force per layer, respectively. Equa@n
(Ny=1); (b) an infinite column of single grains with two springs in shows that, in this case, there is no simple power-law behav-
every row (N,=1). ior in the largeN, limit. Note that Eq.(8) is approximately

linear nearf =0 (i.e., lim;_,q+[d(In §)/d(In f)]=1), and it is
granular systems. Useful supplementary information is covlinear near and beyondi=2. If we attempt to identify a

ered in Secx. IV B and IV E. single power law for intermediate values Hfthe natural
choice is the derivativel(In 6)/d(In f), evaluated at the point
B. Analytic results for limiting cases where this quantity is most slowly varying; i.e., where

o , _ , d?(In 8)/d(In f)? vanishes. This method yields~ 6” with v
It is instructive to consider two cases for which the force_ 1 27 , where we have returned to displacement as the

curves can be explicitly calculated. independent variable.

Case 1. N=1. This system consists of only a single layer  The analysis of Case 2 shows that it is possible for the
of random-length springs, as shown in Figa)7 Assuming  force curve to exhibit a region corresponding to a power less
the equilibrium spring lengths to be uniformly distributed in han 2. 1t also shows that the emergence of a true power law
a finite interval, one immediately obtaifis<A%. In this case  should not be taken for granted in these systems. We find,
the mean-field argumerthe Appendix is exact, as all gaps nowever, that in sufficiently wide systems, a power law does

do close at the same rate. o ~ arise(cf. discussion below
Case 2. N=1. Because of the periodic boundary condi-

tions, this case is equivalent to a single column of grains
without periodic boundary conditions, as shown in Fig)7
Again we take the distribution of equilibrium lengths to be a  Short, wide systemsigure Ga) shows two typical force
square distribution of width & In this case it is more con- curves for an 8&20 system. It appears here that there is a
venient to fix the forceF and compute the displacement regime in whichr=2, followed by the expected crossover to
A(F), since the compressive stress on each grain must be the=1 at largeA. This observation lends some support to the
same. Let us decompose the displacement mean-field argument and is consistent with the claim of
N Gilabertet al. [7], who studied the electrical analog of our
y model (see Sec. IV E below
A= n; Sn (5) Tall, narrow systemdn a 20x150 system, the exponent
appears to shift noticeably. The best fit to the curve shown in
Fig. 6(b) is v=1.7 in the intermediate regime of interest. The
where &, is the displacement of thath spring. WhenF  error in this measurement is estimated to H6.1 on the
=0, we haves,=0 for eachn, the longer spring at each basis of fits made with different choices for which points to
level being just at the threshold of compression. The growtlexclude from the intermediate regime. The data clearly rule
of &, with F depends only om,,, the difference between the out v=2.
equilibrium lengths of the two springs in timh layer. Spe- Roughly square systerAn estimate ofv=1.9 is obtained
cifically, from data on 4640 systems. Figure(6) shows data from
two 40X40 systems. The apparent lack of consistent behav-
ior is presumably due to finite size effects. Nevertheless, us-

C. Numerical results

E if 0<F<ka, ing data from 25 runs, an estimatewf 1.9 can be obtained,
%: K ©6) as shown in Fig. @l). To obtain the dotted line in the figure,
dF 1 the data in the intermediate regime were fit to a power law;

o I kan<F data from the initial linear regime and data from the two

largest forces in the figurevhere we expect a crossover to
linear growth were excluded in making this estimate for the
Note that thea,’s are independent and all have the probabil-exponentw.
ity density P(a) = (2e—a)/2¢* for 0<a<2e. We suggest that the variation of exponent with aspect
The expected value afA/dF is defined as ratio can be traced to the tree structure in the system. Spe-
cifically, we conjecture that if most of the force is transmit-
N ted within a single tree, then a smaller exponent will be
dA Y [2ed§ . ;
sl 2 —nP(a )da,. (7) observed, whereas if the force is spread over many trees, a
dF/ #=1Jo dF e larger exponent. We interpret the following numerical ex-
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periment as support for this conjecture. Starting with a 10* . 10°
60x60 grid, we removed all sites lying outside the 90° cone ; s
emanating from the center of the bottom boundary. We thens 10° §
measured-(A) for this reduced system. In this geometry all §
the active sites at every stage of compression are connecteg '
to the floor at the same point, so all the active bonds aret
contained within a single tree. As shown in FigeBthe
exponentv is close to 1.5, indicating that the behavior within =~ ;g Dt W ! o -
?n ;hnyglt(raeter:e has a different character than in a system witt Single grain F (units of k) A (units of &)

To explore this issue further, we measured the rate at g g. Distribution of spacings between nearest-neighbor
which trees expand as a function of heighthe initial con-  grains for several stages of compression of &40 system.(a)
figuration (Roux et al. have investigated a similar, but not From narrowest to broadest, the curves represent active bond den-
identical, model[3].) While building the initial configura-  gjties of 0.2, 0.4, 0.6, 0.8, and 1.0, which correspond to ensemble
tion, we keep track of the root of the tree associated to eacheraged total forces of 0.85, 4.3, 11.2, 27.9, and 1¥6&E. The
site, thereby counting the numb&(z) of trees that survive  gata represents averages of 25 rufis. The width of the fitted
up to layerz. Since only initial configurations are involved, Gayssians as a function df on a log-log scale. Horizontal error
not their subsequent evolution, rather large systems can Bgs indicate the range of values bfobtained for a given density
simulated. For a system of width 50 000 with data collectedyt active bonds in different runs. The thin lines in the left plot are
for up to 10 layers, we obtained an excellent power-law fit the Gaussians used for the maximal and minimal width estimates at
T(2)=~Az 7, with y=0.66 andA=6.5<10", with only @  each stage. The line of slope 1.0 on the right is a guide to the eye.
slight deviation for very small heightsz&€10) and very
large heightgcorresponding td'(z) <5]. The exponenyis  pression rate. In terms of the probability density for intersite
closely related to the wandering exponent for the optimayjstances, the assumption is expressed quantitatively in Eq.
directed path in a r_andor_n environment, which is known to qu5) of the Appendix, which asserts that the shape and width
2/3 for a I+l-dimensional system8]. Note that A of the distribution of intersite distances are independent of
=1.3N,. [Incidentally, sinceT(1)=N,, itis clear that the o compressiot =N, 8. As discussed in the Appendix, in
power-law fit must be inaccurate farof order 1.] General- o . model the probe{bility densitP(x,8) is well defined
izing from this system to one of arbitrary width, we estimate ;. torx~ 0 e . for bonds whose springs are compressed.
:)hrigdlrzatth;yTltﬂl}jjllNC’O?ftlrgeLgst\llvoin rz;ngdtxhzl;loypS?;s);[g:n' ap- However, even restricting our attention to the active bonds,

XY . ' . we find that our data are inconsistent with the above assump-

Let us speculate on the possible consequences of this eRon. Specifically, in Fig. &) we show the probability den-

timate. The rates of advance of all sites within a single tree ities for the(nonzerd forcesf, wheref = maxkx0}, at vari-
are correlated, since compression of the bottom bond of tha! z cest, W =maxkx0}, atvar
us stages of compression of @440 system, and it is clear

tree affects the rates of all the branches above it. We theré” he distributi ) ;
fore expect the sequence of gap closings to depend upon tﬁ!%at the distribution broadens @sncreases. More quantita-

initial tree structure. Assuming that the system obeys alVely, in Fig. &b) we plot the widths of the best fits to the
simple anisotropic scaling law, we conjecture that in largedata by Gaussian distributions restricted{xo-0}, for sev-
systems the exponentis a function ofN,N, ” alone. Lim- eral values ofé.

ited support for this conjecture comes from two additional '€ Proadening oP(x,6), which occurs during the early
runs on 280 and 40x225 systems. In both cases, and intermediate regime of compression, is a simple conse-

N,N_ %66~ 1.1, and in both cases we observe power-law beduence of force balance at branching points of chains of
hexlvi(y)r with v~1.8. as shown in Fig. (). A more rigorous active bonds. Consider a site at which three active bonds

test would require runs on significantly larger systems, fopeet, forming a ¥ (elther_ right-side up or up_5|de-d0\)vn .
which a more efficient code is needed. Note that the 276 Because there are no tensile forces, the force in the unpaired

system was already too large for us to run to completion; th :Zzgﬂezf tl\r)I((e)YreIiV%rre?sertftiggnfl?:;tﬁg: gg;}hiseis'géhg]g?gteed
curve in Fig. &f) ends well before the crossover to the Iinearat which .the force i'n the unpaired brangh incréases must
regime occurs. Note also that in theXdB25 system, a clean P

power-law regime extends over at least two decadésand eq_ual thesum of the rates of increase of the forceg in the
three decades iff, giving us some confidence that a true paired branches. Since the larger force evidently increases

power-law regime does exist in large systems more rapidly than the two smaller forcéhe forces almost

A consequence of our scaling conjecture is that increasin Irvc\)':gzngemg increasing functions d), the distribution
the system size while keeping the aspect rétied should '

result in exponents that eventually approach that of a Wideéctli:\)/lérIggntdhsevxl/ﬁltecc:ﬁglerpﬁsotfo i??%?sv?/ﬁgh i‘ﬁ ?:%(:Irg?:- of
short system. As we have shown that 2 in theco X1 limit ’ y

(Case 1, Sec. IVB we expect to observe the mean-field tion between force and bond compression rate must be more
o . subtle. Indeed, when all of the bonds are activated, all bonds
result v=2 in very large, approximately square systems as R
compress at exactly the same rate and the force distribution
well. : : ; ) ) ;
simply shifts uniformly to higher forces; the mean-field as-
sumption becomes exact. Thus, we expect to observe a
broadening of the force distribution during early and inter-
The key assumption in the mean-field argument is thamediate stages of compression, with a rate that decreases as

nearest-neighbor sites approach each other at the mean cothe density ofY's becomes smaller. This is precisely the

10'

D. Why the mean-field argument fails
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behavior displayed in Fig. 8, where the width of the positiveconductance plays the role of the springs’ stiffness. The
x portion of the distribution is seen to grow roughly as aproperty that the springs function only under compression
power ofA less than unity for smalh and level off at high can be modeled in the electrical system by the insertion of
compression. A quantitative calculation of the rate of broadperfect diodes, all directed “downward,” in series with each
ening would require a detailed understanding of the statisticeesistor. Rowet al. studied this very moddl7], but did not

of branching in the active network and is beyond the scopeeport results for varying aspect ratios or single trees and did

of this work. not study its relation to thg model, which had not yet been
Let us argue that the broadening of the force distributionntroduced.
generically leads to an exponentsmaller than the mean- A system with batteries is substantially more complicated

field value. Suppose, for definiteness, thi{x,5) has a than a simple, randomly diluted resistor-diode network. To
sharp leading edge at;(9); i.e., that P(x,8)=0 for x  relate the randomly diluted network at the directed percola-
>x4(6) and Iin’;(_,xl— P(x,d) is bounded away from zero. tion threshold to our model just beyond the initial linear

The existence of’s in the active bond network leads to an "€9ime, one must first assume that the network of active
advance of the leading edge(8) that is more rapid than the SPrings in our r_nodel _has the same structur.e as the current
advance o itself. Taking into account the formation of new €a7Ying paths in a directed network of resistors placed at

contacts and branch points during compression, and assurfndom on the lattice. One must also assume a relation be-
ing simple asymptotic behavior, we expect that )~ &° tweenA of our model and the probabilify that a bond exists

with B<1 [9]. Thus, to lowest order ins, we find F in the percolation system. The natural assumption here
:fslp(xﬁ)kdeN 5%, and thereforer<2. Corrections to would be that the probabilityp—p. is proportional toA,

this exponent should become significant &of order unity, wherep; is the critical value for percolation, since=0 is

which is also the order of the width ¢(x). This expecta- the:[ pft?lntt fwhere adsmgle force t(;]hagmr gur_rent carryénglg
tion is consistent with Fig. 6, where it can be seen that thd? h first forms and on average the bonds in our model are

crossover to the linear regime for large occurs for A compressed by an amo“”? proportional Ao[ll]_. In our
=N,/5, which is the last half decade in the plots. system, however, the batteries play two roles. First, they gen-

These qualitative results do not depend on the Iinearitfrate potentials that affect the current distribution even when
(under corﬂpressi()mf the springs in ourpmodel nor do they all the diodes are forward biased, which would correspond to

depend on the dimensionality of the model. They should als et:'r\]/;al’s hrﬁcr?fe)gﬁ:egﬁ;nﬂatehg&teﬁ,if'me aeeilesrtor_ n%tr\]/vork.
apply to thevertical forces in a system with horizontal de- P P Y, ’ y

grees of freedom, providing only that the creation of newd?Odes will be forward biased for a give_n applieq potential
branch points is sufficiently common. Thus, the mean-fielod'fference across the whole network. This dynamical process

argument seems problematc for physical bead packs. Th "3R8 (I TS AT R0 AN oK P2
analysis shows that new contact formation can lead to exp y

. alt ) €XPQiks in a percolation model.
nents smaller than the mean-field value, which is an impor In spite of the difficulties in establishing a connection, it

tant point in light of other mechanisms proposed to explainIS interesting to compare our results for the power law
experimental observations of this expong®itl0]. 9 P P

obeyed by the stiffnessF/dA to the conductivity exponent
obtained from the theory of directed percolation in randomly
diluted resistor networkgl2,13. The conductivity exponent
The analogy between the elastic properties of a networkor directed percolation has been calculated both numerically
of linear springs and the electrical properties of the samend using renormalization group methods and appears to be
network of resistors has been exploited in numerous studiespproximately 0.Z0.1 [12,13, which corresponds to a
[11]. In order to clarify the relation between our model andvalue of 1.7:0.1 for the exponent. The fact that this agrees
others, and particularly with random networks near the diwith our measurements on tall, narrow systems deserves fur-
rected percolation threshold, let us consider the analogy ither study. Other authors have investigated additional details
some detail. We will see that there are good reasons to bef the statistics near threshold in our model and argued that
skeptical of the applicability of percolation model results tothe system is closely related to the percolation phg.
our model, but there is also an intriguing numerical coinci-

E. Relation to random resistor networks

dence.
There is a formal identity between our equations for me- V- STATISTICS OF FORCES ON INDIVIDUAL GRAINS
chanical equilibrium We now consider the statistics of forces transmitted by

individual springs, exploring, in particular, the relation of our
results to they model of Coppersmitlet al.[2]. Our model is
simpler than the granular packings that themodel was
intended to describe. However, our model would appear to
be a better candidate for description by thenodel than the
Vi+1j—Vﬁ _ (10) orig_inal granular packings, since we have removed the ten-
o sorial stresses from our system but still have contacts whose
formation is governed by quenched randomness.
In the latter equationl,ﬁ specifies the current between sites  In the g model in two dimensiongy; ; refers to the frac-
that are joined by a resistande in series with a battery tion of the force on sitei(j) from above that is transmitted
generating a potential differen&ﬁ . Note that the resistors’ to its neighbor ati(—1,j—1), the complementary fraction

fﬁ:_k(ui,j_uiil,j_siijr) (9)

and the electrical equations

1V
ﬁ(

*_ —
lij=5Vij
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7(q)=0.16(q)+(1—q)]+0.8-0.2co%27q), a

for which 20% of theq'’s are either 0 or 1. The model
would predict an exponential tail in the single-grain force
distribution[2]. Even for the small systems we study here,
the exponential tail would be clearly distinguishable from the
rapid decay we observe. Figuré®compares numerical re-
sults from our model and from a simulation of themodel
with 7(q) given by Eq.(11). For theg-model simulation,
forces on the top row were chosen randomly from a uniform
distribution on the interva(0,2).

To understand the discrepancy between our results and
the predictions of thel model, we examine our data as re-
gards assumptiofii) above: i.e., that the distribution gfat
each site is independent of the force supported by that site.
Figure 9c) shows the distribution ofi’s obtained from equi-
librium configurations of our model corresponding to the
same conditions as in Fig(#, but separated according to
. , , sl the force supported by the site. Different symbols in the plot
0 05 1 0 20 40 60 80 indicate different levels of force as described in the figure

q A (units of €) caption. It is clear that the contribution tg(q) from larger
forces is peaked more strongly about 1/2 and has little
weight near 0 or 1, which explains why tlgemodel predic-

frequency
frequency

frequency

FIG. 9. Distribution ofg values and comparison with predic-
tions of theq model.(a) The frequency distribution af’'s averaged : : X 2o
over 25 configurations of a 4040 system. The different symbols tion fa|I_s for this system. As a quantitative measure of the
indicate different stages of compression, with larger valueg at CorTelation, we have computed the covarian€g,,
=1/2 corresponding to larger compressions. All distributions are={(ij _%)Z(Wij —(w;;))) for our model, wherew;; =f;;
normalized to unity, but the points g=0 andg=1 are off scale in +f§ and the averages are performed over space for one
all cases except for the fully compressed die Comparison of the  realization of a 4&40 system(The square in this definition
distributions of total force supported by a single grain in our modelis necessary because left-right symmetry guarantees that a
and in theq model with a similar frequency distribution gfvalues.  correlation function linear ing—1/2 would vanish. Caw
(See text for details.The open circles are averages over the same;gnishes identically in the model sinceqiyj and w; ; are
25 configurations used to generate the.open circléa)irhe heavy independent in that model. As shown in Figdp C,,, de-
dots are averages over 100 configurations ofcfineodel.(c) Sepa-  yelops a significant negative value when the system is under
ration of theq distribution from one curve irta) into components  ¢ompression, indicating that larger forces are associated with

corresponding to differen't levels of supported force. The date)in q’s closer to 1/2. The heavy dot in the figure indicates the
correspond to the open circles(@. The bins used are (&) (open point corresponding to the data irib® and 90).

circles, (W,2W) (open triangles (2W,3W) (filled triangles, and Noting thatC,,, does indeed vanish for very weak com-

(3W,) (filled circles, where W is the average force . .
: . : ) pressions and that the force distributions we have measured
supported by a single grairid) The correlation functionCy, : ; . :
_ 12 . in this regime do not cover a large enough dynamic range to
=((g;j— 2)“(w;; —(w;;))). The data shown are from one realiza- | v disti ish G ian f tial tails. it
tion of a 40<40 system. The heavy dot indicates the point corre-C1€aNY dIS _mgws aussian from expongn 1a .a' S .' ap-
s ; : pears possible that thg model could describe this regime.
ponding to the data itb) and(c). ! . ; ;
Moreover, when the single-grain forces are plotted in units
1—q;; being transfered to sitei¢1,j—1). One assumes of the average force per grain rather than on an absolute
that eachy; ; is a random variable thdt) is independent of scale, the distributions at weak compression are recognized
the otherg’s, and(ii) has the same distribution(q) at every  as being rather broad, and may even be consistent with ex-
site, independent of the force supported by that site. pectations based on tlgemodel with a large fraction off’s
Analytical studies of they model show that the distribu- set to 0 or 1. Thus, thg model may still give useful insights
tion of forces supported by a single grain has an exponentiahto the nature of force propagation in the weak compression
tail at large forces whenevey(q) is nonvanishing ag=1 regime.
[2,15,14. By contrast, the force distributions in our model, It should also be noted, however, that the correspondence
plotted in Fig. 8, show no evidence of exponential tails. Atbetween configurations of our model and stress fields gener-
no stage during the compression does it appear that thated by theg model is nontrivial. Weakly compressed con-
g-model distributions are a good match for the distributionsfigurations in our model contain long force chains that
we observe. In particular, consider the fourth curve from thebranch only occasionally, as is the case in ghmodel with
left in Fig. 8, which is made at a compression for which a large fraction ofy's set to 0 or 1. In the model, however,
almost allsitesare active but there remains an appreciablethese chains correspond to pure random walks with a wan-
fraction of inactivebonds The distribution ofg; ;s directly ~ dering exponent of 1/2, whereas in our model we expect
measured from our data in this regifsee Fig. @a)] is rea-  chains with a wandering exponent of 2/3, as they correspond
sonably represented by to optimal directed paths in a random environment. It is not
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clear to us whether this difference and others of similaiwork was supported by NSF through Grant Nos. DMS-98-
subtlety should affect the single-particle force distributions. 9803305 (D.G.S. and M.G.S. and DMR-94-12416

(J.E.S.9.
VI. CONCLUSIONS
We briefly summarize the results of our study of the sca- APPENDIX: THE MEAN-FIELD ARGUMENT
lar model, discuss its generalization to three dimensions, and PREDICTING »=2

finally draw two conclusions concerning the implications for

real systems or more realistic models. . .
In the context of a toy model, we have tested argumentéhat was developed to describe forces during the compres-

that have been applied to stresses in static, noncohesiion of & bead pack between parallel platgee, e.g., Refs.
granular materials. Further study of the model is needed.%.5) ) .

especially simulations of larger systems, but already two im- We define theoverlap between two adjacent beads as
portant facts have been establishét). Correlations in the (do—d), whered is the distance between their centers and
stress configuration are responsible for substantial effect$lo is the nominal distance at which the beads touch but exert
both at the level of single-grain forces and that of macro-no force. Note that because of the minus sign, the overlap is
scopic stresseg?) Depending on théproperly scaleflas-  Positive for beads in contact, and negative for beads not in
pect ratio, new contact formation may play a decisive role incontact.

determining the macroscopic stress-strain relationship, with We introduce the random variabke to be the overlap
sufficiently tall systems showing power-law behavior with abetween two randomly chosen adjacent beads. Thus, the
nontrivial exponent. Regardingl), we have identified two sample space foX includes both the choice of configuration
important effects(i) the distribution of forces broadens un- (spring lengths in our modgland the choice of a pair of
der compression because of force balance constraints at sitédjacent beads. Of coursealso depends on the displace-
where three active bonds meet; giidl larger forces tend to mentA of the floor plate(As in Sec. |, we normalize so that
divide more evenly between supporting grains as a result gionzero forces start at=0.) We rescale the independent
the dynamical process that determines the structure of theariable, definings=A/N,, where the bead pack I8, lay-
active bond network. Theories that neglect these correlatiorr's thick. LetP(x,6) be the probability distribution foiX.

In this appendix, we summarize a mean-field argument

fail when applied to our model. The average force per spring, is given by

One may wonder whether qualitatively new features
might appear in a 3D generalization of our model in which 5)= J’w FOOP(x. 8)dx Al
the vertical direction is taken to be the 111 direction of a (9) o (OP(x,8)dx, (A1)

simple cubic lattice. As a preliminary check, we have mea-
sured the statistics of trees in the initial configuration andwheref(x)=maxkx0}. Since

observed their general morphology. The number of surviving

trees decays as 2 and the trees remain relatively compact. f(x)=0 for x<0, (A2)
In other words, the diameter of surviving trees growg®¥

(compared taz®%% in two dimensions and the branches o
separate trees do not become heavily entangled with ea
other. On this basis, we conjecture that the essential physics

of the stress-strain relation will not be qualitatively different

in three dimensions. In particular, we expect a variation ingq (0)=0. The rescaled variablé= A/N, equals the aver-

the exponenv with the scaled aspect ratio. age change in the overlay resulting from motion of the
We draw two general conclusions. First, it appears thaoor thus

the mechanism for the broadening of the vertical force dis-
tribution should be present in the full tensorial problem as J'oo

¢ the integral may be restricted to ¢, Of course, by our
&prmalizations,

P(x,00=0 for x>0, (A3)

well, and therefore should be re-examined as a possible ex- XP(X, 8)dx= 6+ &y, (A4)
planation for the observation of smaller exponents than those ”

derived from the mean-field argument. Experiments measu
ing the dependence of the exponendn aspect ratio would
be especially interesting. Second, in a bead pack in whic
grains suffer appreciable distortion, we expect correlations OE
a type that renders thgmodel predictions inaccurate. It ap- d
pears possible that thgmodel is a good approximation for
the weak-compression regime, though there are subtle differ- P(x,8)=P(x— 8,0). (A5)
ences between configurations of our model gimdodel con-

figurations that warrant further study. Our model may besypstituting Eq(A5) into Eq. (A1) and rescaling EqgA2)
useful in further studies of the crossover between the twgnd(A3), we deduce that

regimes.

Where &y Is the average overlap wheh=0.

The first main assumption of the mean-field argument is a
onsiderable strengthening of E44): One assumes that the
hape and width of the probability distribution are indepen-
ent of §, i.e.,

0
ACKNOWLEDGMENTS o= kf §(x+ S)P(x,0)dx, (A6)
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conversations, and also Scott Zoldi for his suggestions. Thiwhich is equivalent to Eq(1.2) of Ref.[6].
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The second main assumption of the mean-field argument 0
is thatP is continuous in both arguments and U=kJ_ 5(X+ O)[C+O(x)]dx, (A8)

which immediately yields'= 2. Under assumptiofA5), the
: _ only way to accommodate a value nfess than 2 is to posit
lim P(x,0=C, A7) that the limit in Eq.(A7) is infinite.

Note that in our model, the distribution foX is not
uniquely defined folX<0, since inactive grains are free to
relocate slightly. Despite this ambiguity, in Sec. IV D we are
where C is a finite positive constant. Combining the two able to test hypothesi@A5) by focusing on positive values
assumptions, we find that of X.

x—0"
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